ME

- Max Berggren (@maxberggren)
- Undergraduate at KTH
- Royal Institute of Technology
- Stockholm, Sweden
- Working at Gavagai Labs .V
- "Teaching computers to read"
- SINUS project

■ Mapping the contemporary Swedish language

TASK

- Predict author location from text

SUMMARY

- Priedhorsky et al. 2014
- Improving on
- Results
- Applications of the method: - Maps of Swedish dialects

SIGNAL OR NOISE

- Words carry information about position

SIGNAL OR NOISE

- Words carries information about position
- "I'm taking the tram now"
- Tram in three Swedish cities

SIGNAL OR NOISE

- Words carries information about position
- "I'm taking the tram now" "God I hate Stockholm, people are so stressed"
- Most Swedes have an opinion about the capital
- I.e. speaking about Stockholm does not imply that you are there

SIGNAL OR NOISE

- Words carries information about position
- "I'm taking the tram now"
- "God I hate Stockholm, people are so stressed"
- "Oh lovely, lovely Falköping"
- Mentioning a small town will make it likely that the author is from its proximity

TRAINING DATA

- Twitter gardenhose for tweets with geographic metadata
- ~2\% of Swedish Twitter posts have latitude and longitude
- 4429516 tweets $\approx 630 \mathrm{MB}$
- Gathered May to August 2014

TRAINING DATA

- 4429516 tweets with a coordinate

```
Lorem ipsum dolor tweet sit amet, twat consectetur
``` adipiscing elit tweet tweet.
lat, lon
- Every uniqe \(n\)-gram can be mapped to a geographic distribution of coordinates

\section*{TRAINING DATA}

Big shopping centre in northern Sweden
litta

Southern slang for the swedish word for little

tram

\section*{MODEL}
- Fit 2D Gaussian functions on the distrubitions (Priedhorsky, 2014)
- Gaussian Mixture Model
- Three Gaussians
- Python
- Sci-kit learn

\section*{MODEL}
- Placeness: \(p=e^{\frac{100}{-\rho}}\) ("peakiness")
- Where \(\rho\) is the log probability in the mean of the gaussian
- Log placeness of some words:
\begin{tabular}{cl|c|c|c}
& & \multicolumn{3}{|c}{ Gaussian } \\
& & 1st & 2nd & 3d \\
\hline Falköping & & 58 & 9 & 9 \\
Stockholm & & 37 & 10 & 10 \\
spårvagn & "tram" & 36 & 18 & 15 \\
och & "and" & 16 & 15 & 9
\end{tabular}

\section*{MODEL}

Lorem ipsum dolor tweet sit amet, twat consectetur adipiscing elit tweet tweet
lat, lon

Tweets with metadata
"Bag-of-Gaussians"

\section*{PREDICTING}
- Use n-gram Gaussians in centroid

\section*{PREDICTING}
- Weighted arithmetic mean (centroid)
\[
\bar{\mu}^{i}=\left(\begin{array}{l}
\mu_{1} \\
\mu_{2} \\
\mu_{3}
\end{array}\right)_{\substack{\text { coordinates }}}^{i} \bar{p}^{i}=\left(\begin{array}{c}
p_{1} \\
p_{2} \\
p_{3}
\end{array}\right)^{i} \quad M=\frac{\sum_{i=1}^{n} \bar{\mu}^{n} \cdot \bar{p}^{n}}{\sum_{i=1}^{n} \sum_{j=1}^{3} p_{j}^{n}}
\]
- Where \(\bar{\mu}^{i}\) is a vector of Gaussian means, \(\bar{p}^{i}\) the uaussians' placeness (weight), and \(n\) the number of Gaussians.

\section*{PREDICTING}
- Priedhorsky et al. 2014 predicts tweets
- Enriching a Swedish dataset of blogs
\begin{tabular}{|l|l|}
\hline Blogs with lat+lon & Blogs without any metadata \\
\hline
\end{tabular}

Try model performance

To be enriched with coordinate metadata

\section*{RESULTS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & \multirow[t]{2}{*}{Placeness \(\log T\)} & \multicolumn{2}{|l|}{Error (km)} & \multicolumn{3}{|r|}{Percentile (km)} & \multicolumn{2}{|l|}{\(e<100 \mathrm{~km}\)} \\
\hline & & \(\tilde{e}\) & \(\bar{e}\) & \(25 \%\) & \(50 \%\) & \(75 \%\) & Precision & Recall \\
\hline GAZETTEER & - & 450 & 626 & 62 & 450 & 964 & 0.31 & 0.31 \\
\hline \(\rightarrow\) TOTAL & 20 & 256 & 380 & 51 & 256 & 516 & 0.34 & 0.34 \\
\hline
\end{tabular}

Centroid
- Gazetteer: baseline (most frequent city)
- \(\tilde{e}\) median error, \(\bar{e}\) mean error
- Total: Thresholded centroid
- i.e. n-grams needs log placeness > 20
- error < 100 km (typical county)

\section*{FILTERING}
- Use list of known places
- Find interesting distributional contexts
- Window (6+0), (3+3) and (0+6)
1. Find most frequently occuring contexts
2. Rank contexts by ability to return words with high placeness (percentage of words with \(\log (p)>20)\)

\section*{FILTERING}
- Resulting regexpes
- "go to <location>"
- "off to <location>"
- "live(s) in <location>"
- <location> filtered by \(0.00008 \times N \leqslant f_{\text {wd }} \leqslant N / 300\)
- \(N=\) length of text, \(f_{w d}=f r q\) of word

\section*{FILTERING}
- Preprocessing -> fewer Gaussians

\section*{RESULTS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{\begin{tabular}{l}
Placeness \\
\(\log T\)
\end{tabular}} & \multicolumn{2}{|l|}{Error (km)} & \multicolumn{3}{|l|}{Percentile (km)} & \multicolumn{2}{|l|}{\(e<100 \mathrm{~km}\)} \\
\hline & & \(\tilde{e}\) & \(\bar{e}\) & \(25 \%\) & 50 \% & \(75 \%\) & Precision & Recall \\
\hline Gazetteer & - & 450 & 626 & 62 & 450 & 964 & 0.31 & 0.31 \\
\hline Total & 20 & 256 & 380 & 51 & 256 & 516 & 0.34 & 0.34 \\
\hline Filtered Centroid & 20 & 200 & 365 & 44 & 200 & 460 & 0.38 & 0.38 \\
\hline
\end{tabular}

\section*{RESULTS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{\begin{tabular}{l}
Placeness \\
\(\log T\)
\end{tabular}} & \multicolumn{2}{|l|}{Error (km)} & \multicolumn{3}{|r|}{Percentile (km)} & \multicolumn{2}{|l|}{\(e<100 \mathrm{~km}\)} \\
\hline & & \(\tilde{e}\) & \(\bar{e}\) & 25 \% & \(50 \%\) & \(75 \%\) & Precision & Recall \\
\hline GazETTEER & - & 450 & 626 & 62 & 450 & 964 & 0.31 & 0.31 \\
\hline Total & 20 & 256 & 380 & 51 & 256 & 516 & 0.34 & 0.34 \\
\hline Filtered Centroid & 20 & 200 & 365 & 44 & 200 & 460 & 0.38 & 0.38 \\
\hline
\end{tabular}

\section*{MAPS}
- Enriching a Swedish dataset of blogs
\begin{tabular}{|c|c|c|}
\hline Blogs with lat+lon & \begin{tabular}{c}
Blogs with inferred \\
metadata
\end{tabular} & Blogs without any metadata \\
\hline
\end{tabular}
- Let's query the dataset for words and see where people use them!
"BROKEN"
query on blog dataset without inferred lat lon

321 hits

söndrig - hits: 1151

query on blog dataset with inferred lat lon

1151 hits
goal:

image: Mikael Parkvall
"NOT"
query on blog dataset without inferred lat lon

1646 hits

query on blog dataset with inferred lat lon

4491 hits
goal:

"LITTLE"
query on blog dataset without inferred lat lon

2417 hits

query on blog dataset with inferred lat lon

5906 hits

småkusin - hits: 678

\begin{tabular}{|ccccc|}
\hline 1 & \(\frac{1}{1}\) & 1 & \\
\hline None & Low & Medium & High & Very high
\end{tabular}
tremänning - hits: 1717

syssling - hits: 7204

\begin{tabular}{ccccc|}
\hline\(\perp\) & \(\perp\) & \(\perp\) & \(\perp\) & \\
\hline None & Low & Medium & High & Very high
\end{tabular}

\begin{tabular}{ccccc}
\(\perp\) & \(\perp\) & \(\perp\) & & \\
\hline \(0 \%\) & \(25 \%\) & \(50 \%\) & \(75 \%\) & \(100 \%\)
\end{tabular}
tipspromenad - hits: 7112

böla - hits: 2213

grina - hits: 5559

"THE POLICE"

\begin{tabular}{|ccccc|}
\hline 1 & 1 & 1 & 1 & \\
\hline \(0 \%\) & \(25 \%\) & \(50 \%\) & \(75 \%\) & \(100 \%\) \\
\hline
\end{tabular}
karparna - hits: 346

snuten - hits: 4893

"farbror blå" - hits: 2521

\section*{REFERENCES}
- Priedhorsky et al. 2014
- http://arxiv.org/pdf/1305.3932.pdf
"DOLLARBILL"

\author{
query on blog
} dataset without inferred lat lon

104 hits

query on blog dataset with inferred lat lon

340 hits
goal:
```

